Primary cilia dysfunction as a novel pathogenic mechanism of birth defects in FASD

Karen Boschen, PhD

Parnell Lab

March 7, 2019

CONFLICT OF INTEREST STATEMENT

• Karen Boschen has no conflicts of interest to report.

A MOUSE MODEL OF FETAL ALCOHOL SPECTRUM DISORDERS (FASD)

HOW DOES ALCOHOL AFFECT FACE AND BRAIN DEVELOPMENT?

Sonic hedgehog (Shh): protein critical for face and brain development, particularly along the ventral midline

SONIC HEDGEHOG (SHH) PATHWAY IN THE ROSTROVENTRAL NEURAL TUBE (RVNT)

Does neurulation-stage alcohol exposure affect the Shh pathway in the RVNT?

SHH PATHWAY IS DOWNREGULATED 6-12 HR AFTER PAE

REDUCED SHH-MEDIATED CELL CYCLE GENES AND RVNT VOLUME 6-12 HR AFTER PAE

Boschen et al., in preparation

SHH TRANSDUCTION REQUIRES PRIMARY CILIA

- Shh pathway requires functioning primary cilia: hair-like sensory organelles that protrude from most cells
- o Important for developmental processes, e.g. organogenesis, limb development, neural patterning

GENETIC CILIOPATHIES

- Genetic ciliopathies affect primary cilia structure, function, or cilia-anchoring proteins
- Ciliopathies affect many organ systems, including development of the brain, orofacial region, and digits
 - Eye defects (e.g. coloboma)
 - Cleft palates, lips
 - Polydactyly
- Associated with Shh pathway dysregulation

ANIMAL MODELS OF CILIOPATHIES

- Target cilia-related proteins, particularly those involved in Shh signaling
 - Eye defects, cleft palate and lips, polydactyly, hypo/hypertelorism

PRIMARY CILIA DENSITY WAS NOT AFFECTED BY PAE

SUMMARY

- 1. Dysregulation of Shh pathway in regions of the neural tube that give rise to ventral midline brain structures could <u>disturb the growth trajectory of these areas</u>, resulting in both physical malformations and perturbed cognitive-behavioral function.
- 2. Based on the changes in expression of Gli3 and genes related to cilia function and stability, we hypothesize that neurulation-stage alcohol induces a *"transient" ciliopathy* in the embryo, leading to the shared phenotype between ciliopathies and prenatal alcohol exposure.

ACKNOWLEDGMENTS AND FUNDING SOURCES

Parnell Lab

Scott Parnell, PhD

Eric Fish, PhD Debbie Dehart

Laura Murdaugh Haley Mendoza-Romero Henry Gong Divya Venkatasubramanian Jamie Leitzinger Jeffrey Matthew Jisha Reji <u>UNC</u> Leslie Morrow, PhD Jeremy Simon, PhD

<u>University of Texas at Austin:</u> Johann Eberhart, PhD Desirè Buckley, PhD

NIH

National Institute on Alcohol Abuse and Alcoholism

F32-AA026479 U01-AA021651 R01-AA026068

Brugmann 2010

CILIA RETRACT DURING ACTIVE MITOSIS

MOTHER CENTRIOLE BECOMES CILIA'S BASAL BODY

MOTILE CILIA IN THE PRIMITIVE NODE

Sulik et al., 1994