Alcohol-Induced Neuroimmune Activity in the Developing Brain and Neuroprotection by Anti-Inflammatory Agents

Paul Drew, Ph.D. and Cindy Kane, Ph.D.

Department of Neurobiology and Developmental Sciences
University of Arkansas for Medical Sciences

LEARNING OBJECTIVES

- Understand the sensitivity of the developing brain to the toxic effects of alcohol
- Understand the role of alcohol-induced neuroinflammation in mediating toxicity in the brain
- Appreciate the potential of antiinflammatory therapies in treatment of FASD

FASD: Behavioral Consequences

- Primary cause of mental retardation
- Learning and memory deficits
- Executive function deficits
- Attention deficits
- Balance and motor coordination deficits
- Increased risk of addiction

FASD: Neuropathology

- Neuron apoptosis
- Inhibited neurogenesis
- Restricted neurotrophic support
- Impaired neuron migration
- Impaired dendrite arborization
- Impaired synaptogenesis
- Impaired synaptic plasticity
- Altered neurophysiology

FASD: Neuropathology

- Neuron apoptosis
- Inhibited neurogenesis
- Restricted neurotrophic support
- Impaired neuron migration
- Impaired dendrite arborization
- Impaired synaptogenesis
- Impaired synaptic plasticity
- Altered neurophysiology
- Neuroimmune system activation
 - microglia are the principal neuroimmune cells

Microglial Activation

Response to:

- Homeostatic disruption
- Injury, infection, disease, toxins

Ethanol Impact on Neuron–Microglia Interactions

Neonatal Mouse Model of 3rd Trimester Fetal Alcohol Exposure

- Postnatal treatment (P3-5 or P4-9)
- E = ethanol treated

3.5 or 4 mg/kg/day

BEC 200-325 mg/dl

• Control groups:

H = handled only

V = vehicle treated

Microglial Activation

Neuroinflammatory Cytokine and Chemokine Expression

Potential Mechanisms of Ethanol-Induced Neuroinflammation in FASD Models

MyD88-Dependent Signaling

IL-1β

Hippocampus

Cerebellum

CX3CL1 (Fractalkine) – **CX3CR1** Signaling

CX3CL1 (Fractalkine) – CX3CR1 Signaling

Peroxisome Proliferator Activated Receptor- γ (PPAR- γ) Agonist Protection in Neurodegenerative Disorders

Multiple Sclerosis

(Diab et al., 2002, J Immunol; Xu and Drew, 2007, J Immunol; Xu et al., 2009, J Leukocyte Biol; Solt et al., 2011, Nature)

- Alzheimer's Disease
- Spinal Cord Injury
- Stroke
- Parkinson's Disease
- Amyotrophic Lateral Sclerosis
- FASD ... ?

PPAR-γ Agonists

• Thiazolidinediones:

Pioglitazone (Actos™)

Rosiglitazone (Avandia™)

• Docosahexanenoic acid (DHA): an ω-3 fatty acid

Pioglitazone: Prevention of Microglial Activation

Microglial Activation: Quantitative Morphometry

HIPPOCAMPUS

CEREBELLUM

CEREBRAL CORTEX

Pioglitazone: Prevention of Neuroinflammatory Cytokine and Chemokine Expression

Docosahexaenoic Acid (DHA): Prevention of Neuroinflammatory Cytokine and Chemokine Expression

HIPPOCAMPUS

We will be solved by the second by the secon

$\text{TNF-}\alpha$

Gene Expression

IL-1β

CEREBELLUM

CEREBRAL CORTEX

Pioglitazone: Protection of Purkinje Neurons

VEHICLE PIO

ETHANOL

Summary

- Ethanol in the developing CNS activates the neuroimmune system
 - Microglial activation
 - Pro-inflammatory cytokine and chemokine expression
- Potential mechanisms of ethanol-induced neuroinflammation
 - TLR-4 and downstream MyD88 and/or TRIF signaling
 - Inflammasome signaling
 - Fractalkine signaling
- Ethanol-induced neuroinflammation in animal models of FASD occurs in brain regions linked to FASD behavioral deficits
- PPAR-γ agonists including DHA and pioglitazone block neuroinflammation and prevent neurodegeneration in animal models of FASD
 - Suggests PPAR-γ agonists may be effective in treatment of FASD

Ongoing Studies

Determine:

- the mechanisms (TLR4, MyD88, TRIF, inflammasomes, fractalkine signaling pathways) by which ethanol induces neuroinflammation and neuropathology
- whether neuroinflammation contributes to long-term behavioral deficits associated with FASD
- whether PPAR- γ agonists and other anti-inflammatory molecules block ethanol-induced neuroinflammation, neuropathology, and behavioral deficits

These studies will:

- elucidate new therapeutic strategies
- provide proof-of-principle that anti-inflammatory agents including PPAR-γ agonists may be effective in treatment of FASD

Selected References

Kane, C.J.M., K.D. Phelan, L. Han, R.R. Smith, J. Xie, J.C. Douglas, and P.D. Drew. 2011. Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator activated receptor gamma ligands. Brain Behavior and Immunity. 25:S137-S145.

Kane, C.J.M., K.D. Phelan, J.C. Douglas, G. Wagoner, J. Walker-Johnson, J. Xu, and P.D. Drew. 2013. Effects of ethanol on immune response in the brain: region specific changes in aged mice. J. Neuroinflammation. 10:66-69.

Kane, C.J.M., K.D. Phelan, J.C. Douglas, G. Wagoner, J. Walker-Johnson, J. Xu, P.S. Phelan, and P.D. Drew. 2014. Effects of ethanol on immune response in the brain: region specific changes in adolescent versus adult mice. Alcohol Clin. Exp. Res. 38:384-391.

Drew, P.D., J.W. Johnson, J.C. Douglas, K.D. Phelan, and C.J.M. Kane. 2015. Pioglitazone Blocks Ethanol Induction of Microglial Activation and Immune Responses in the Hippocampus, Cerebellum, and Cerebral Cortex in a Mouse Model of Fetal Alcohol Spectrum Disorders. Alcohol Clin. Exp. Res. 39:445-454.

Kane, C.J.M., and P.D. Drew. 2016. Inflammatory Responses to Alcohol in the CNS: Nuclear Receptors as Potential Therapeutics for Alcohol-Induced Neuropathologies. Journal of Leukocyte Biology. 100:951-959.

Acknowledgements

Laboratory Contributors:

Gail Wagoner, LAT J.C. Douglas, B.A., B.S. Tonya Rafferty, B.S. Jennifer Johnson, B.S.

Collaborator:

Kevin Phelan, Ph.D.

NIH: National Institute on Alcohol Abuse and Alcoholism
NIH: NIGMS IdeA Program/UAMS Center for Translational Neuroscience