# Soft neurological signs and prenatal alcohol exposure: a population-based study in remote Australia

Barbara Lucas on behalf of the Lililwan Project Team

#### The University of Sydney - Sydney Medical School

- Discipline of Paediatrics and Child Health
- George Institute for Global Health
- Poche Centre for Indigenous Health

7th International Conference on FASD Vancouver, Canada 2017



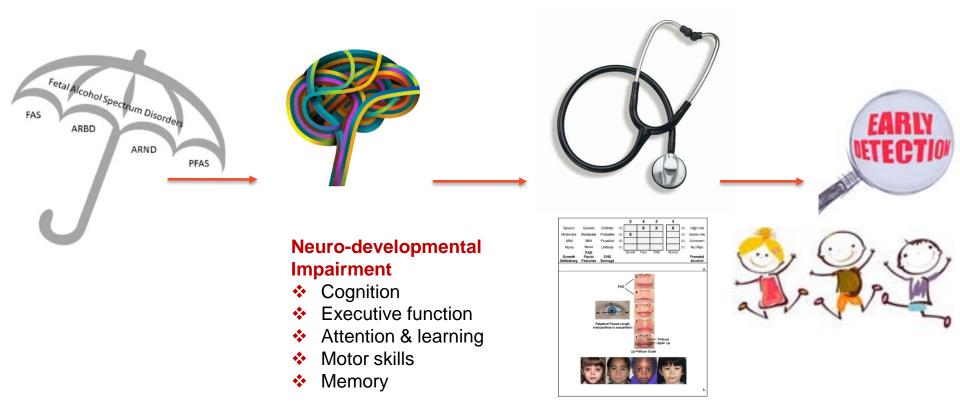


# Soft Neurological Signs (SNS)

mild dysfunction in regulation of muscle tone, choreiform dyskinesia, disdiadochokinesis, difficulties in balance, fine manipulative disability, and difficulties in co-ordination (Gustafsson 2010)



# **SNS** and Diagnostic Promise



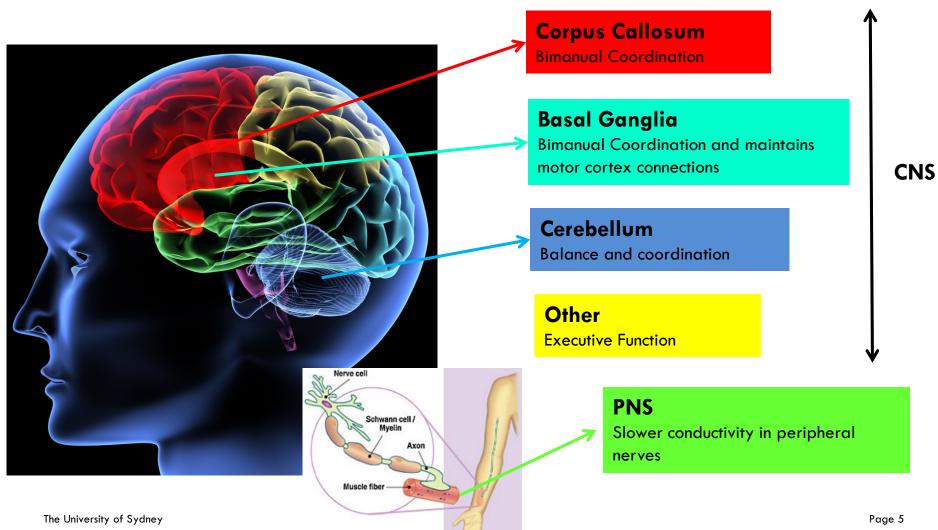





Alcohol can cause brain dysfunction

# **SNS and Prenatal Alcohol Exposure**





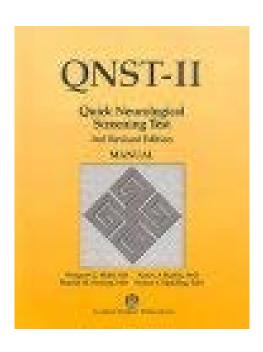

#### **SNS** Assessment

May provide additional information which increases the suspicion of brain dysfunction in children when PAE is known or suspected



# Biological plausibility




### **Evaluation of SNS**

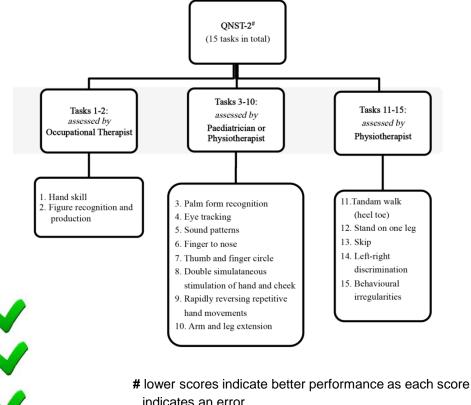
### **FASD Guideline Recommendations**

| FASD Guideline                                                        | Assessment recommendation                                 | Cut-off for impairment                        | SNS Assessment<br>Recommended |
|-----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|-------------------------------|
| The Canadian FASD Diagnostic<br>Guidelines <sup>12, 13</sup>          | "motor skills"                                            | 2SD below the mean (2 <sup>nd</sup> centile)  | <b>✓</b>                      |
| The 4-Digit Diagnostic  Code — University of Washington <sup>14</sup> | "motor/sensory integration"                               | 2SD below the mean (2 <sup>nd</sup> centile)  | <b>✓</b>                      |
| Institute of Medicine (IOM) <sup>15</sup>                             | "motor dysfunction"                                       | None provided                                 | ×                             |
| Centers for Disease Control and<br>Prevention <sup>16</sup>           | "motor functioning" including gross and fine motor skills | 1SD below the mean (16 <sup>th</sup> centile) | <b>✓</b>                      |

Few published FASD prevalence studies have reported using SNS as part of the diagnostic process (May 2006, 2007, 2011, 2013)

## **QNST-2** Assessment




**Validated** 

Reliable

Inexpensive: < \$200

**Training: simple** 

Assessment: 15 mins & fun



indicates an error

Normative data available for 5 to 80+ years



# Background - Lililwan Project

#### What's Known

- SNS are subtle indicators of brain dysfunction in a variety of disorders.
- The QNST-2 is a reliable and valid measure of SNS.

#### What's Unknown

- QNST-2 has not previously been used in Aboriginal children living in remote Australian communities.
- QNST-2 utility for identifying SNS in children with known or suspected prenatal alcohol exposure (PAE) or Fetal Alcohol Spectrum Disorders (FASD).









#### **Aims**

- 1. To identify SNS in a population-based study of children aged 7-9 years living in very remote Aboriginal communities in the Fitzroy Valley where PAE was high
- 2. Compare children with and without
  - (i) PAE or (ii) FASD.

### **Hypotheses**

- 1. (i) In a cohort of predominantly Australian Aboriginal children living in remote communities the median QNST-2 scores will be higher than existing population norms.
- 2. (ii) QNST-2 scores and prevalence of SNS will be higher in children with PAE than without.
- 3. (iii) QNST-2 scores and prevalence of SNS will be **higher** in children with **FASD** than without.

#### Study Design:

Methods

Cross sectional study
(Smaller study within population-based FASD prevalence study using active case ascertainment)

#### Setting:

Fitzroy Valley, Western Australia (population: 4,500; Aboriginal: 81% (Morphy 2010))

#### Participants:

All children born in 2002 and 2003

#### Standardised Assessments:

QNST-2 (Mutti et al 1998)

- Significant SNS scores  $\leq 5^{\text{th}}$  percentile
- Higher scores indicate more SNS

**AUDIT-C** 

#### Statistical Analysis:

SPSS (IBM 2012)

Descriptive analyses, Independent t-tests ( $\alpha = 0.05$ )



### **Child Characteristics**

| Child Characteristics                 | Result        |
|---------------------------------------|---------------|
| Participants (%)                      | 108/134 (81%) |
| Mean age                              | 8.7 years     |
| Males                                 | 53%           |
| Aboriginality                         | 98%           |
| Living in very remote communities     | 70%           |
| "Risky" and "high risk" PAE (AUDIT-C) | 51.5%         |
| FASD diagnosis                        | 19.4%         |

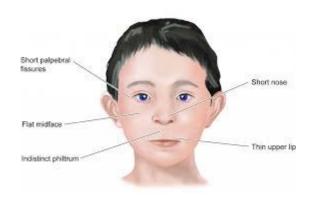
### **Study Aims**

| Aims                | QNST-2 Total score<br>median (range)                         |  |  |
|---------------------|--------------------------------------------------------------|--|--|
| 1. Total Cohort     | 19.0 (4 – 66);  Normal range: 73.3%                          |  |  |
| 2. FASD and no FASD | FASD: 22.0 (11 - 66) No FASD: 18.0 (4 - 40)  r=0.3*, p=0.004 |  |  |
| 3. PAE and no PAE   | PAE: 20.0 (4 – 66) No PAE: 16.5 (4 – 66)  r= 0.2*, p=0.045   |  |  |

- higher scores indicate more SNS
- each individual score indicates an error in motor task performance

Size effects (r): 0.1=small effect, 0.3=medium effect, 0.5=large effect (Cohen 1998)

#### **Prevalence of Severe SNS**


| Score category          | Total cohort<br>(n=21)<br>no. (%) | FASD<br>(n=21)<br>no. (%) | No FASD<br>(n=86)<br>no. (%) | PAE<br>(n=60)<br>no. (%) | No PAE<br>(n=42)<br>no. (%) |
|-------------------------|-----------------------------------|---------------------------|------------------------------|--------------------------|-----------------------------|
| Normal                  | 90 (83.2)                         | 15 (71.4)                 | 74 (86.0)                    | 49 (81.7)                | 36 (85.7)                   |
| Moderate<br>Discrepancy | 16 (15.0)                         | 4 (19.0)                  | 12 (14.0)                    | 9 (15.0)                 | 6 (14.3)                    |
| Severe<br>Discrepancy   | 2 (1.9)                           | 2 (9.5)                   | 0 (0.0)                      | 2 (3.3)                  | 0 (0.0)                     |

**Normal**:  $\geq 25^{th}$  percentile, Score range: 0 - 28

Moderate Discrepancy: 6th to 24th percentile, Score range: 29 to 44

**Severe Discrepancy:** ≤ 5<sup>th</sup> percentile, Score range: + 45

### **SNS and CNS Domains of Impairment**





# ≥ 3 domains of impairment

| QNST-2 Score         | Percentile (score range)                      | Frequency ≥ 3 domains CNS impairment | Mean (SD)   |
|----------------------|-----------------------------------------------|--------------------------------------|-------------|
| Normal               | ≥ 25 <sup>th</sup> (0-28)                     | 29.2% (26/89)                        | 1.65 (1.97) |
| Moderate discrepancy | 6 <sup>th</sup> – 24 <sup>th</sup> (29 to 44) | 50% (8/16)                           | 2.94 (2.51) |
| Severe discrepancy   | ≤ 5 <sup>th</sup> (+ 45)                      | 100% (2/2)                           |             |

# Findings are consistent with other studies

- SNS significantly more common in FASD children vs typically developing children (p < 0.01): QNST-2, n=52 (Clinic based study University of Washington registry; 5-8 yo's; Jirikowic 1998)
- QNST-2 scores were significantly higher in subjects with a FASD vs PAE but normal CNS (Clinic based study University of Washington registry; all ages; Astley 2010)
- Minor neurological anomalies (Touwen's examination) higher in children with PAE vs no PAE; 4.5 yrs (Larroque 2000)
- QNST-2 discriminated between children with perceptual motor difficulties vs typically developing children (Parish 2002)
- DCD children had mean QNST-2 score ≤ 5<sup>th</sup> percentile (severe discrepancy) (O'Hare 2002)

# **Strengths & Limitations**

#### **Strengths**

- Indigenous partnership
- Population-based study with high participation rates
- Blinding of assessors to PAE and FASD status
- Use of standardised assessment tools

#### Limitations

- Small sample size (unable to control for confounders)
- Absence of standardised norms for Aboriginal children
- Potential misclassification bias (assessment at one time point)

# Conclusions

- Aboriginal children living in remote communities have similar SNS to population norms despite significant underperformance of some subgroups including children with PAE and FASD
- High physical activity levels in children living in remote communities may be protective
- SNS were more common in children with PAE or FASD, consistent with the known neurotoxic effect of PAE
- Prevalence of SNS are 2 x higher in children with a FASD
- The QNST-2 is a useful screen for detecting subtle neurological dysfunction and indicating the need for more comprehensive assessment in children with PAE or FASD.

# Acknowledgements

#### Co-authors

- Prof Jane Latimer
- Robyn Doney
- Dr Rochelle Watkins
- Dr Tracey Tsang
- Prof Tracy Jirikowic
- Prof Heather Carmichael Olson
- Dr James P Fitzpatrick
- June Oscar
- Maureen Carter
- Prof Elizabeth J Elliott

### Support

- Sharon Eadie
- Hannah Parker
- Gary Rolls
- Trish Evans

#### Lililwan Collaborators

- The George Institute for Global Health
- The University of Sydney
- Marninwarntikura Women's Resource Centre
- Nindilingarri Cultural Health Services









### **Funders**

- National Health and Medical Research Council (NHMRC)
- Department of Families, Housing, Community Services and Indigenous Affairs (FaHCSIA)
- Department of Health and Ageing (DoHA)
- Poche Centre for Indigenous Health, The University of Sydney
- Save the Children



Poche Centre for Indigenous Health







