miRNA biomarkers for prenatal

alcohol expesure in pregnant women.

Sridevi Balaraman, Jordan Schafer, Alexander M Tseng, Wladimir Wertelecki, Natalya Zymak-Zakutnya, Lyubov Yevtushok Christina Chambers, **Rajesh C Miranda**, and the CIFASD

Conflict of Interest Statement:

I do **not** have an affiliation (financial or otherwise) with a pharmaceutical, medical device or communications organization.

Biomarker development for FASD

- Biomarkers for exposure*
 - γ-glutamyltransferase(GGT)
 - Mean corpuscular volume (MCV)
 - Carbohydrate deficient transferrin (CDT)
 - Alcohol metabolites in newborn
 - Meconium
 - Placenta
 - Dried blood spots (Guthrie cards)
- Biomarkers that predict FASD outcomes
 - ?
- The Problem:
 - Not all prenatally exposed infants (even heavily exposed), exhibit craniofacial dysmorphia or growth deficits.
 - Nevertheless, these infants may be at risk for intellectual and secondary disabilities if undiagnosed

^{*} Bakhireva LN, Savage DD. Focus on: biomarkers of fetal alcohol exposure and fetal alcohol effects. Alcohol Res Health. 2011;34(1):56-63. Review. PubMed PMID: 23580042; PubMed Central PMCID: PMC3860558.

Can microRNAs (miRNAs) be biomarkers for FASD outcomes?

• But what are miRNAs?

Ethanol decreases miR-9 Expression in Zebrafish

Control

Ethanol-Exposed

Figure 2 Blood and other body fluids contain active miRNAs

Guay, C. & Regazzi, R. (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus *Nat. Rev. Endocrinol.* doi:10.1038/nrendo.2013.86

Can maternal circulating miRNAs predict infant outcomes?

Methods

- Prospective Ukrainian cohort
 - Recruited between 2006-2011
 - Collaboration with Omni-Net Centers
- Participants were recruited from:
 - The Rivne Regional Medical Diagnostic Center
 - The Khmelnytsky Perinatal Center
- Screening for prenatal alcohol consumption was carried out by prenatal care providers
 - Infants were evaluated at 6 and 12months of age
- This study was approved by IRBs:
 - University of California, San Diego
 - Lviv Medical University in Ukraine
 - Texas A&M University

Methods Continued

 Maternal Plasma Samples were obtained at mid and late pregnancy (136 samples from 68 pregnant women)

ID	Group	Mid Pregnancy	Late Pregnancy	Totals
HEa	Alcohol-exposed, Infant Affected	22	22	44
HEua	Alcohol-exposed, Infant Unaffected	23	23	46
UE	Unexposed Control	23	23	46
	Totals	68	68	136

Exiqon qRT-PCR miRNA arrays (752 miRNAs)

ANOVA Models

ANOVA Model: HEa>(HEua ≅ UE)

Can We Classify the HEua group?

- Random Forest Analysis
 - Machine learning classification strategy
- 5% of miRNAs with highest variance irrespective of class membership
- Included clinical/demographic variables
- Initial classification of HEa vs. UE

Top 5% high-variance miRNAs*,#

Confusion Matrix for Group HEa vs. UE

	Classified	Classified as	Classification	
	as HEa	UE	error	
True HEa	18	4	0.182	
True UE	2	21	0.087	

^{*}With demographic and clinical variables. Overall misclassification rate = 13.33

^{*}Mid- and late-pregnancy miRNAs included in model as separate variables

HEua Group Prediction

RFA model: (HEa ≅ HEua)≠UE

Understanding the biological underpinnings of maternal miRNA prediction models for FASD outcomes:

Are maternal miRNAs functional in the fetus?

Effects of ANOVA and RFA miRNAs on placental trophoblasts

- Common pathways
- ■ANOVA-specific pathways HEa>(HEua ≅ UE)
- ■RFA-specific pathways (HEa ≅ HEua)≠UE

Maternal miRNAs control Placental growth

Conclusions: maternal miRNAs may be useful predictors of infant FASD outcomes.

ANOVA models:

- Plasma miRNAs in mid and late pregnancy separate HEa (Heavily exposed, affected) from other groups
- miRNAs elevated in HEa group
- Random Forest Classification Models:
 - May be used to categorize HEua infants into risk subpopulations
- Identified miRNAs are functional in fetal tissues
 - Maternal miRNAs control placental invasion and cell proliferation

UC San Diego SCHOOL OF MEDICINE

Jordan Schafer Wladimir Wertelecki Christina Chambers

Natalya Zymak-Zakutnya Lyubov Yevtushok

Sridevi Balaraman Alexander Tseng

U01AA014835 and NIH Office of Dietary Supplements (Chambers) U24AA014811 (Riley) R01AA013440 (Miranda)

