Liver Transplant for Organic Acid Disorders

Greg Enns, M.B., Ch.B.

Professor of Pediatrics

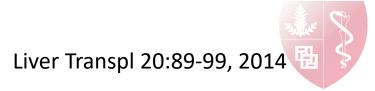
Director, Biochemical Genetics Program

Lucile Packard Children's Hospital

Stanford University

Disclosures

- Consultant Moderna Therapeutics, Horizon Pharma, Natera
- Clinical trials BioElectron, Stealth Therapeutics
- DSMB Biomarin, Audentes Therapeutics, Amicus, RegenxBio, Neurovia


Liver Transplant for Organic Acidemias

- Liver the major site of branched-chain amino acid metabolism
- MMA and PA
- Poor outcome for severe cases

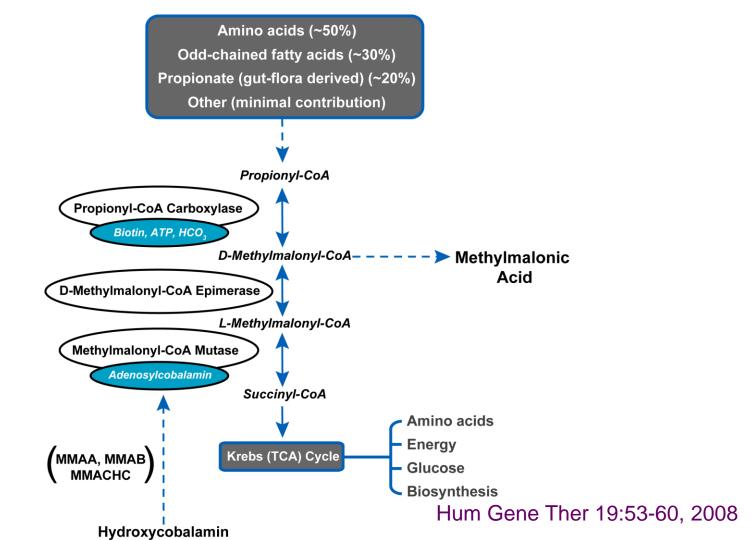
Pediatric Liver Transplant for Organic Acidemias

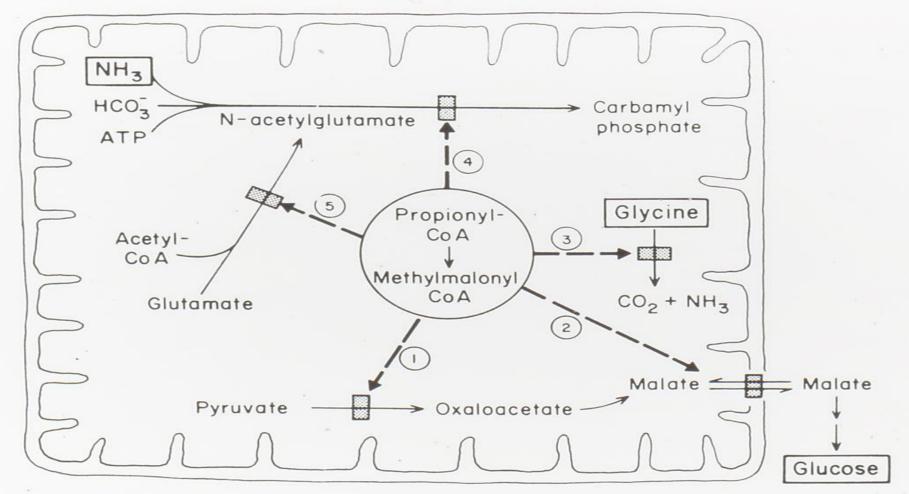
- United Network for Organ Sharing (UNOS) 2002-2012
- 5672 pediatric LT
- 323 (5.4%) liver-only for UCDs/OAs
 - Proportion increased from 4.3% to 7/4%
- 17 LKT (all with MMA)
- 96% deceased donor transplants
- 59% transplanted <2 y

Pediatric Liver Transplant for Organic Acidemias

	TABLE 1. Classification of U	obs and ons
	UCDs $(n = 186)$	OAs $(n = 137)$
Mechanism	Defect in 1 of 6 urea cycle enzymes	Defect in an enzyme that metabolize
		branched-chain amino acids or lysine or in
		another step of amino acid metabolism
Types		• MSUI
	 Carbamyl phosphate synthetase deficiency 	• P.
	 N-Acetylglutamate synthetase deficiency 	• MM
	Ornithine transcarbamylase deficiency (X-linked)	 Homocysteinuria/methylmalonic aciduria
		• Isovaleric acidemi
	 Argininosuccinic acid synthetase 	• Biotin-unresponsive 3-methylcrotonyl coenzym
	deficiency (citrullinemia)	A carboxylase deficienc
	 Argininosuccinate lyase deficiency 	 3-hydroxy-3-methylglutaryl coenzym
		A lyase deficienc
	 Arginase deficiency 	 Ketothiolase deficience
	•	Glutaric acidemia type

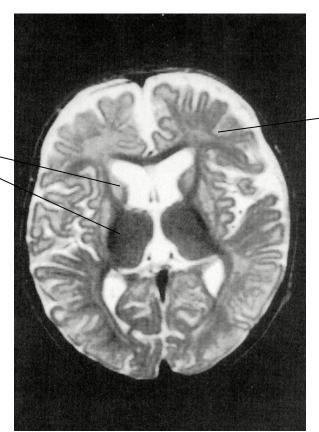
Methylmalonyl-CoA mutase


- Nuclear encoded
- Mitochondrial localized
- Homodimer
- Requires 5'-deoxyadenosylcobalamin (Adocbl)



Propionyl-CoA Carboxylase

- Nuclear encoded
- Mitochondrial localized
- Dodecamer (PCCA and PCCB subunits)
- Biotin-dependent reaction



The Metabolic & Molecular Bases of Inherited Disease

Acute presentation	Chronic presentation
Neonatal sepsis-like picture, temperature instability, respiratory distress, hyperventilation	Often episodic characteristic signs and symptoms
Nervous system	Nervous system
 Altered level of consciousness (from lethargy and somnolence 	Hypotonia
to coma) mimicking encephalitis or drug intoxication	 Developmental delay (learning disabilities, intellectual disability
Acute encephalopathy	 Movement disorders/dystonia
 Seizures (in general not isolated but in the context of altered level of consciousness) 	• Seizures
 Movement disorders (more frequent in PA) 	Optic atrophy
 Stroke-like episodes (more frequent in MMA) 	 Psychiatric symptoms (hallucinations, psychotic attacks)
Gastrointestinal system	Gastrointestinal system
 Vomiting and feeding difficulties 	 Recurrent vomiting with ketoacidosis
	 Abnormal feeding behavior (anorexia)
	Failure to thrive
	 Constipation
	 Pancreatitis
Hematologic findings	Hematologic findings
Neutropenia, pancytopenia	Neutropenia, pancytopenia
	 Secondary hemophagocytosis (rare)
Heart	Heart (more frequent in PA)
 Acute cardiac failure (mostly on basis of cardiomyopathy) 	 Cardiomyopathy
Arrhythmias	 Prolonged QTc interval in ECG
	Kidney (more frequent in MMA)
	Chronic renal failure in MMA
at I Dava Dia 0:130, 3014	Other
net J Rare Dis 9:130, 2014	• Dermatitis
	Hearing loss

BRAIN INJURY IN ORGANIC ACIDEMIAS

caudate and putamen hyperintensity

delayed myelination

MMA Therapy

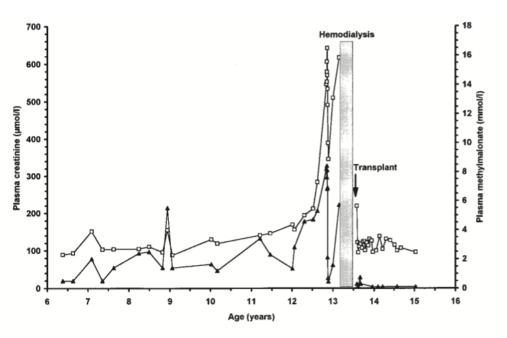
- Special low-protein diet
- Emergency/sick-day protocols
- Carnitine supplementation
- Vitamin B₁₂ in some cases
- Dialysis
 [↑]NH₃, metabolic acidosis, renal failure
- Liver or combined liver/kidney transplantation
- Kidney transplantation

PA Therapy

- Special low-protein diet
- Emergency/sick-day protocols
- Carnitine supplementation
- Carbamylglutamate
- Nitrogen-scavenging medications
- Liver transplantation
- Heart transplantation

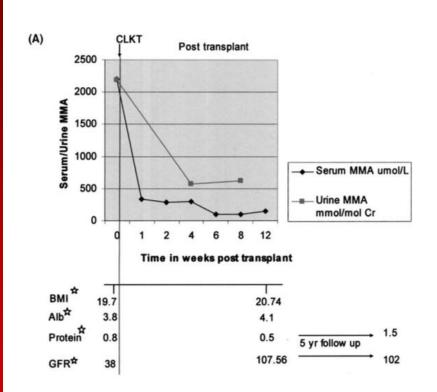
Gene Therapy with a Scalpel

- Liver transplantation
- Kidney transplantation
- Combined liver/kidney transplantation


Combined liver-kidney transplantation in methylmalonic acidemia

W. G. van't Hoff, BSc, MD, MRCP, M. Dixon, BSc, SRD, J. Taylor, BM, MRCP, P. Mistry, PhD, MRCP, K. Rolles, MS, FRCS, L. Rees, MD, FRCP, and J. V. Leonard, PhD, FRCP

A 13-year-old boy with non-B12-responsive methylmalonic acidemia (MMA) had chronic renal failure. Hemodialysis led to symptomatic and biochemical improvement. He subsequently received a combined liver-kidney transplant. After 16 months of follow-up he has a normal lifestyle and a marked reduction in plasma and urine methylmalonate. (J Pediatr 1998;132:1043-4.)



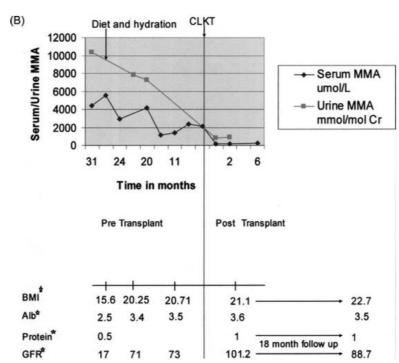

Combined Liver-Kidney Transplantation in MMA

Fig. 1. Change in plasma creatinine (*empty squares*) and methylmalonate (*MMA*) concentrations (*closed triangles*) before and after transplantation.

Combined Liver-Kidney Transplantation in MMA

ORIGINAL ARTICLE

A detailed analysis of methylmalonic acid kinetics during hemodialysis and after combined liver/kidney transplantation in a patient with *mut*⁰ methylmalonic acidemia

Hilary J. Vernon · C. John Sperati · Joshua D. King · Andrea Poretti · Neil R. Miller · Jennifer L. Sloan · Andrew M. Cameron · Donna Myers · Charles P. Venditti · David Valle

Methylmalonic Acid Kinetics

- 28 y *mut*⁰ MMA
- Hemodialysis
 - 54% reduction in plasma MMA
 - Rapid reaccumulation of MMA over 24 h
- Following combined LKT
 - 97% reduction in plasma MMA
- Post-operative
 - Worsening vision (pre-existing optic neuropathy)
 - Seizures
 - Transient, focal leukoencephalopathy

Methylmalonic Acid Kinetics

Table 1 Plasma metabolite measurements during first week of dialysis

	Day 1		Day 2		Day 3		Day 4	Day 5	
	Pre-dialysis	2 h post dialysis	Pre-dialysis	2 h post dialysis	Pre-dialysis	2 h post dialysis	4 h post dialysis	22 h post diaysis	52 h post diaysis
Plasma MMA (umol/L)	6,127	3,914	5,818	2,986	4,156	•	37.73	•	61.87
Plasma C3 (umol/L)	57.62	•	51	39.51	51.41	•	37.73	•	61.87
Plasma C4DC (umol/L)	8.66	•	7.25	3.03	4.76	•	3.38	•	9.23

^{*} Indicates sample not available

Methylmalonic Acid Kinetics

Table 2 Plasma and CSF metabolites measured at post operative days (POD) 28, 48, 53, 55, and 57

	Methylmalonate (umol/L)	C3 (umol/L)	C4DC (umol/L)	Glycine (umol/L)	Alanine (umol/L)	Glutamine (umol/L)	Serine (umol/L)
Normal range in CSF	0.14-0.73	•	•	10.0–32.0	24.0-42.0	320–837	28–61
Normal range in plasma	0.11-0.43	< 0.92	< 0.18	87.0-323.0	136.0-440.0	337.0-673.0	67-171
Average CSF/plasma	1.61	•	•	0.039	0.098	0.828	0.227
CSF (POD 28)	1439	5.97	0.49	5	49	399	16
Plasma (POD 28)	338	26.52	1.08	203	416	567	60
CSF/plasma	4.26	0.23	0.45	0.02	0.12	0.70	0.27
CSF (POD 48)	1274	2.22	0.42	5	51	376	16
Plasma (POD 48)	153	13.95	0.46	191	400	477	71
CSF/plasma	8.33	0.16	0.91	0.03	0.13	0.79	0.23
CSF (POD 55)	565	0.5	0.1	6	36	396	27
Plasma (POD 53)	135	••	••	165	334	541	63
Plasma (POD 57)	104	12.52	0.81	224	301	540	72
CSF/plasma (D55+D57/2)	5.43	0.04	0.12	0.03	0.12	0.73	0.40

Treatment of Methylmalonic Acidemia by Liver or Combined Liver-Kidney Transplantation

Anna-Kaisa Niemi, MD, PhD¹, Irene K. Kim, MD², Casey E. Krueger, PhD³, Tina M. Cowan, PhD⁴, Nancy Baugh, MS, RD⁵, Rachel Farrell, MS^{1,6}, Clark A. Bonham, MD², Waldo Concepcion, MD², Carlos O. Esquivel, MD, PhD², and Gregory M. Enns, MB, ChB¹

Table I. Demographic, diagnostic, and surgical data of patients (n = 14) who received LKT or LT at Lucile Packard Children's Hospital at Stanford between December 1997 and May 2012

Patient	Sex	Time of	Identified	Diagnosis*	Age at Tx	Procedure	Graft	Long-term	Complications
rauent	Sex	diagnosis	by NBS	Diagi10SIS*	Age at 1X	Procedure	uran	immunosuppression	complications
1	М	Neonatal	no	Non-B12-responsive clinically	10 y 9 mo	LKT	Whole	Prednisone, tacrolimus	
2	М	Neonatal	no	fibroblast assay, mut ⁰	20 y 8 mo	LKT, bilateral nephrectomy	Whole	Prednisone, tacrolimus, sirolimus	Re-exploration, bleeding Post-transplant diabetes mellitus and hypertension attributed to immunosuppressive regimen
3	М	Neonatal	no	Fibroblast assay, mut ⁰	5 y 11 mo	LKT, bilateral nephrectomy, splenectomy	Whole	Prednisone, tacrolimus, azathioprine	 Spontaneous splenic rupture → splenectomy Re-exploration, bleeding Seizure P0D12 (high tacrolimus level)
4	М	Neonatal	no	†	11 y 2 mo	LKT, right nephrectomy, splenectomy	Whole	Sirolimus	
5	F	Neonatal	yes	c.682C>T (p.R278X), c.1106 G>A (p.R369H)	3 y 3 mo	LT	Whole	Tacrolimus, mycophenolate	Mild acute rejection 4 weeks post-transplantation, received steroids
6 [‡]	F	3 mo	no	c.322C>T (p.R108C)	15 y 4 mo	LKT	Whole	Prednisone, tacrolimus, mycophenolate	
7	F	Neonatal	yes	c.682C>T (p.R228X), c.581C>T (p.P194L)	11 mo	LT	Whole	Tacrolimus	
8	F	9 mo	no	c.572C>A (p.A191E)	17 y 6 mo	LKT, splenectomy	Whole	Tacrolimus, mycophenolate	Re-exploration, drainage of subphrenic abscess
9	М	Neonatal	no	c.349G>T (p.E117X), c.1038_1040 delTCT	8 y 10 mo	LKT	Whole	Tacrolimus, mycophenolate	Acute rejection 3 weeks post-transplant
10	М	2 y	no	Fibroblast assay, mut ⁰	16 y 1 mo	LKT	Whole	Prednisone, tacrolimus, mycophenolate	
11	F	Neonatal	yes	c.682C>T (p.R228X)	10 mo	LT	1. Whole	Tacrolimus	1st transplantation: Hepatic artery thrombosis POD5 → re-transplantation. 2nd transplantation: No complications
							2. Whole		
12 §	F	Neonatal	yes	c.1399C>T (p.R467X)	1 y 1 mo	LT	Seg 2-4	Tacrolimus	Mild acute rejection POD10, received dose of steroids
13 [§]	F	Neonatal	yes	c.1399C>T (p.R467X)	1 y 2 mo	LT	Seg 2-4	Tacrolimus	
14	F	Neonatal	yes	c.682C>T (c.R228X) p.A732WFSX3	1 y 8 mo	LT	Whole	Tacrolimus	

LT or LKT for MMA

- Mean age for transplantation 8.75 ± 7 years (0.8-20.7 y)
- LKT 13.3 <u>+</u> 4.9 years (5.9-20.7 y)
 - 88% underwent pre-operative hemodialysis
- LT 1.5 + 0.9 years (0.8-3.3 y)

Postoperative period

Mean follow-up 3.3y

Patient survival	100%
Liver allograft survival	93%
	(hepatic artery thrombosis, n=1)
Kidney allograft survival	100%

Table II. Mean maximum serum MMA (μ mol/L \pm 1 SD, normal < 0.3) and range, and mean serum MMA at the time of admission for transplantation, and 3 days, 1 month, and 4 months after transplantation in all patients, in patients with LKT, and in those who received LT

Patient group	Mean maximum serum MMA in μmol/L (range)	Serum MMA in μ mol/L on admission for transplantation	Serum MMA in μ mol/L three days post-transplantation	Serum MMA in μ mol/L 1 mo post-transplantation	Serum MMA in μ mol/L 4 mo post-transplantation
All patients (n = 14)	2107 ± 1427 (210-5452)	1647 ± 1492 (99-4420)	210 ± 154 (73-622) (<i>87% decrease</i>)	$125 \pm 94 \ (27-343) \ (93\% \ decrease)$	305 ± 108 (143-600) (83% decrease)
LKT (n = 8)	2840 ± 1365 (1450-5452)	2580 ± 1451 (1030-4420)	264 ± 209 (99-622) (<i>90% decrease</i>)	149 ± 119 (38-343) (94% decrease)	303 ± 196 (143-600) (88% decrease)
LT (n = 6)	1129 ± 821 (507-2330)	529 ± 259 (99-732)	164 ± 83 (73-261) (<i>69% decrease</i>)	97 ± 48 (27-153) (<i>82% decrease</i>)	307 ± 61 (236-383) (<i>51% decrease</i>)

Decrease in MMA level (%) from the level on admission to transplantation in italics.

Other clinical outcomes

No hyperammonemia or metabolic acidosis

- Renal function normal on those with LT only
 - mean follow-up 1.1 years

Neurological outcomes

14

LT 6

Pretransplant:

1/6 global developmental delay 3/6 mild developmental delay 2/6 mild motor delay, otherwise age appropriate

Post:

3/5 gained motor skills

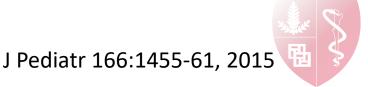
No neurological deterioration

LKT 8

Pretransplant:

4/8 global developmental delay 2/8 mild developmental delay

Post:

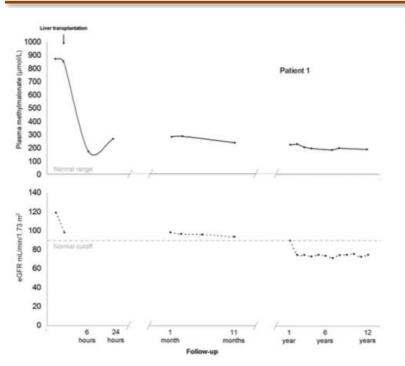

Maintained previous level
No neurological deterioration

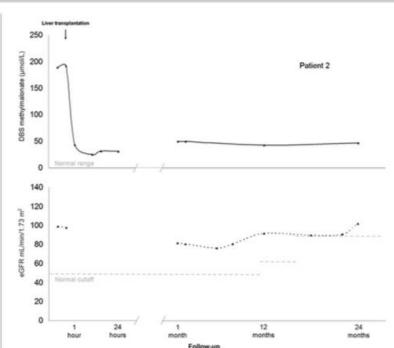
Liver or combined LKT for MMA

Table IV. Average daily protein intake of total protein, natural protein, and medical food protein (and range) at the time of admission for transplantation and at the time of last available nutritional assessment after transplantation among all patients, those who received LKT, and those who received LT

	On admi	ission for transplanta	ition	At the time of last nutritional assessment			
Patient group	Total protein	Natural/whole protein	Protein from medical foods	Total protein	Natural/whole protein	Protein from medical foods	
All patients (n = 14)	1.6 g/kg/d (0.9-2.8)	0.9 g/kg/d (0.3-1.9) (n = 13)*	0.8 g/kg/d (0.4-1.7) (n = 13)*	1.6 g/kg/d (0.6-2.6)	0.9 g/kg/d (0.6-1.8) (n = 13)*	0.7 g/kg/d (0-1.4) (n = 13)*	
LKT (n = 8)	1.2 g/kg/d (0.9-1.7)	0.6 g/kg/d (0.3-1.0) (n = 7)*	0.7 g/kg/d (0.4-1.2) (n = 7)*	1.3 g/kg/d (0.6-1.9)	0.7 g/kg/d (0.6-1.0) (n = 7)*	0.6 g/kg/d (0-0.9) (n = 7)*	
LT (n = 6)	2.1 g/kg/d (1.3-2.8)	1.1 g/kg/d (0.8-1.9)	1.0 g/kg/d (0.5-1.7)	2.0 g/kg/d (1.5-2.6)	1.2 g/kg/d (0.9-1.8)	0.8 g/kg/d (0.6-1.4)	

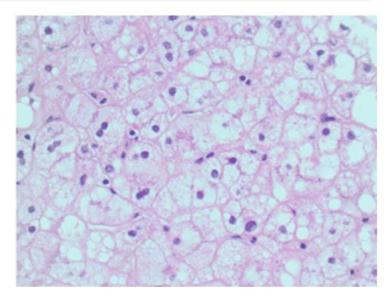
^{*}Documentation of exact natural vs medical food intake is not available on 1 patient who received LKT (patient 1).


		Pre-transplant developmental	
Case	Transplant age	functioning (age)	Post-transplant developmental functioning (age)
1	10 y 9 mo	PIQ = 55, 1st %ile; VIQ = 87, 19th %ile (9 y 5 mo)	PIQ = 82, 12th %ile; VIQ = 89, 23rd %ile (12 y 2 mo)
2	20 y 8 mo	Assessment not available for review; mild delays, B and C grades in high school, completed 1 y college	No decline, day program, lives with family
3	5 y 11 mo	Assessment not available for review; GDD dx in records	Increased fine motor skills, attention, and mood by parent report
4	11 y 2 mo	Assessment not available for review; GDD dx in records	Increased motor skills and energy level by parent report
5	3 y 3 mo	Cognitive = 55, <1st %ile; Language = 50, <1st %ile; Motor = 55, <1st %ile (3 y 2 mo)	No changes noted
6	15 y 4 mo	PIQ = 92, 30th %ile; VIQ = 92, 30th %ile (14 y 11 mo)	Attended college, no concerns or changes noted
7	11 mo	Assessment not available for review; mild delays reported in dev. milestones, sits and crawls (11 mo)	Walks and jumps; receives ST, PT, OT (2 y 9 mo)
8	17 y 6 mo	PIQ = 53, <1st %ile; VIQ = 61, <1st %ile (17 y 6 mo)	No change, Adult school program, lives at home (19 y)
9	8 y 10 mo	GDD, cognitive function estimated at 12-24 mo (8 y 1 mo)	GDD, no changes
10	16 y 1 mo	All scores within the average range (15 y 7 mo)	No concerns or changes
11	10 mo	Cognitive = 9 mo; Motor = 5 mo (7 mo)	Gross motor skills increased by clinician report; energy and social skills increased by parent report
12	1 y 1 mo	Cognitive = 62, 1st %ile; Language = 68, 2nd %ile (7 mo)	Cognitive = 67, 1st %ile; Language = 80, 9th %ile (17 mo)
13	1 y 2 mo	Cognitive = 62, 1st %ile; Language = 62, 1st %ile (7 mo)	Cognitive = 65, 1st %ile; Language = 82, 12th %ile (17 mo)
14	1 y 8 mo	Cognitive = 85, 16th %ile; Language = 109, 73rd %ile; Motor = 67, 1st %ile (16 mo)	Not assessed


Early Liver Transplantation for MMA

- 2 patients with severe neonatal disease
- LT at 3 y and 9 m
 - No preoperative dialysis
 - Before significant neurological or renal morbidity
- Follow-up 12 y and 2 y
 - Mild renal impairment
- Normal tolerance to fasting catabolism
- Increased protein tolerance
 - 0.8 g/kg/d to 1.5-1.8 g/kg/d

Early Liver Transplantation for MMA


Domino Liver Transplantation in MMA

• 28 y *mut*⁰ MMA

- Frequent episodes of metabolic crises after age 21 y
- Increasing neurological disability

Domino recipient

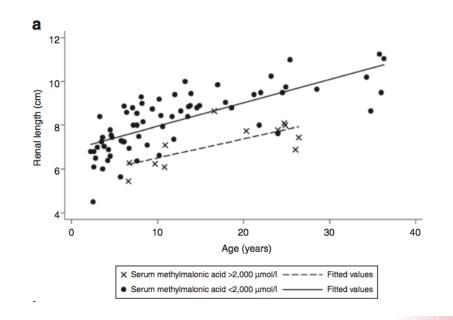
- 61 y
- primary sclerosing cholangitis, biliary cirrhosis

MMA explant: 25-30% macrosteatosis

Pre-operative Dialysis for MMA

TABLE 3. Peri- and postoperative plasma methylmalonic academia levels (normal range, 0.35 ± 0.22 nmol/mL)

Patient number	Admission to hospital	Just before dialysis	Just after dialysis	Just before surgery	Anhepatic time	After reperfusion	Just after operation	POD 1	POD 7	POD 30
1	268.0	92.2	58.5	70.8	62.0	64.0	47.8	37.5	37.7	99.4
2	47.0	40.0	33.6	50.7	44.7	48.2	48.8	60.9	65.1	59.2
3	143.0	31.7	32.9	25.9	32.9	38.1	39.6			36.4
4	39.0	14.4	13.4	12.3	19.0	26.8	38.4	37.0	28.1	29.3
5	375.0	137.3	87.1	86.4	114.6	106.4	100.2	190.5	109.6	87.8
6	1970.0	357.0	140.5	251.0	199.0	181.5	146.4	329.0	176.9	232.0
7	166.0	107.3	38.7	38.7	46.3	35.2	31.5	44.4	22.7	13.8
8	278.0	NA	NA	342.0	298.0	337.0	251.0	175.8	77.7	59.6
9	702.0	NA	NA	302.0	303.0	230.0	191.0	117.5	147.9	124.4
10	255.0	NA	NA	160.0	147.0	119.0	88.0	129.0	33.8	8.5


NA, not applicable; POD, post operative day.

Cystatin C

- 13 Kda endogenous cystein proteinase inhibitor
- Major role in intracellular catabolism of peptides
- Produced by all nucleated cells, synthesized at a relatively constant rate, released into plasma
- 99% filtered by glomeruli
- Elevated urine cystatin C may indicate tubular epithelial damage

Renal Growth in MMA

- MMA (n=50)
- 2004-2011
- Renal length decreased over time v. controls
- Cystatin C and [MMA]
 highly correlated with
 decreased renal function
 and smaller kidneys

Renal Disease in MMA

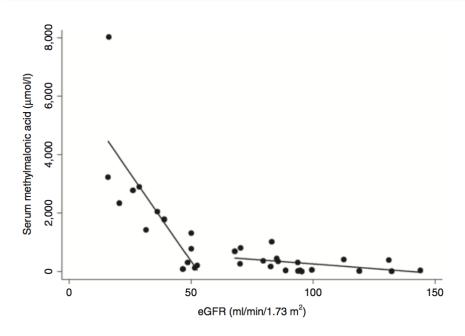
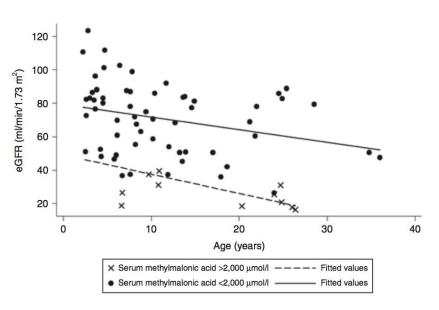
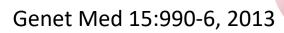
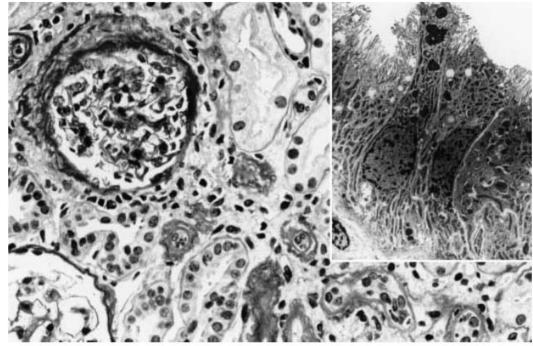




Figure 3 Serum methylmalonic acid (MMA_s) for all enzymatic subtypes versus estimated glomerular filtration rate (eGFR) creatinine—cystatin C.

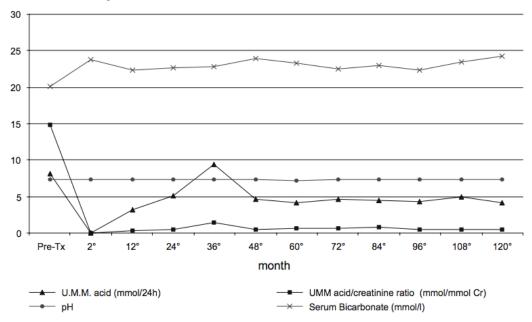
BRIEF REPORT

R. Lubrano · P. Scoppi · P. Barsotti · E. Travasso

S. Scateni · S. Cristaldi · M.A. Castello


Kidney transplantation in a girl with methylmalonic acidemia and end stage renal failure

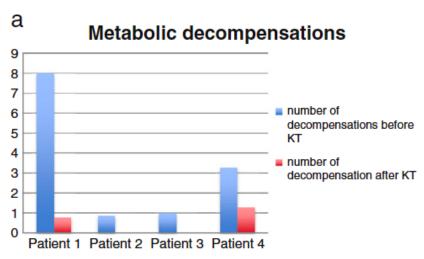
	PreTx	PostTx								
Months		2	6	12	18	24	30	36	42	48
UMM acid UMM acid/creatinine ratio UMM acid/BUN ratio Serum creatinine (mg/dl) BUN (mg/dl) GFR _(creatinine) (ml/min/1.73 m ²) GFR _(99TeDTPA) (ml/min/1.73 m ²) Proteinuria (mg/24 h)	8.16 14.84 0.028 57	0 0 0 1 10 50	0 0 0 0.9 11 65	3.2 0.25 0.0014 0.8 10 75 65	3.5 0.39 0.0022 1 8 85	5.1 0.47 0.0017 0.9 9 80 64 90	7.2 0.85 0.0031 0.7 9 75	9.4 1.36 0.0093 1.1 11 58 63 85	4.1 0.48 0.0030 1 13 59	4.6 0.5 0.0045 1 14 67 62 37
RTP (%) FENa (%)		92.84 0.55	92.5 1.05	92.42 1.10	91.25 0.61	90.99 1.61	82.28 1.32	69.35 1.07	88.76 1.12	97 0.27

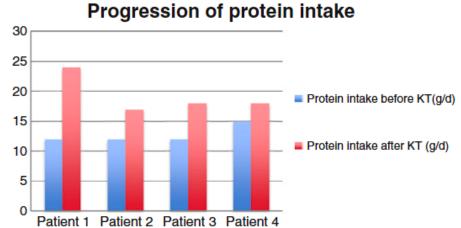


- 17 y female vitamin B₁₂–unresponsive MMA
- Growth retardation at 3 m
- Frequent episodes of vomiting at 4 m
- Hyperammonemic coma at 9 m
- Hemodialysis at 16.5 y
 - Concentric hypertrophic cardiomyopathy

Fig. 1 Renal biopsy showed focal chronic parenchymal damage with interstitial and periglomerular fibrosis, focal tubular atrophy, and infiltrating mononuclear cells; epithelial cells of histologically normal tubuli do not reveal relevant substructural alterations. *Inset* An EM picture from the proximal tubular epithelium. PAS, ×210 (inset UrPb, ×1640)

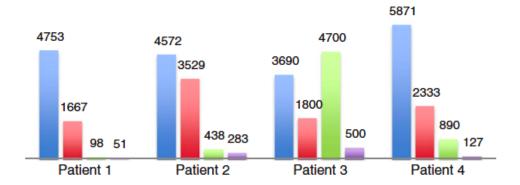
10 y follow-up


- 16 y 5 m follow up
 - Normal renal function
 - Uneventful pregnancy
- DNA analysis
 - Homozygous c.586C>T (p.Arg196Term) in exon 4
 - MMA cblA type
 - Fibroblasts responsive to vitamin MMA, Methylmalonic acidemia B_{12}
 - Milder clinical course than mut⁰ type


Table 1 Results of in vivo and in vitro exposure of patient's fibroblasts to vitamin B_{12}

Exposure to vitamin B ₁₂	Analysis	-OHCbl	+OHCb
In vitro	[1- ¹⁴ C] Propionate incorp oration rate in fibroblasts (nmol/10 h/mg protein)	0.08	0.33
In vivo	Urinary MMA (mmol/mol of creatinine)	213.0	76.8
	Serum MMA (µmol/L)	43.3	13.5

Pediatr Nephrol 28:2067-8, 2013


- 4 patients with mut⁰ MMA (5 to 10 y)
- End-stage renal disease (n=2); stage III (n=1); normal (n=1)
- No further metabolic decompensations
- Protein intake increased from 0.6 g/kg/d to 0.8 g/kg/d
- 1 death secondary to hepatoblastoma
- 2 neurologically stable; 1 transient improvement of choreoathetosis

Urinary and plasma MMA

urinary MMA before KT (mmol/moL creatinine)
urinary MMA after KT (mmol/moL creatinine)
plasma MMA before KT (μmol/L)
plasma MMA after KT (μmol/L)

KT: Kidney tansplantation

- 2/4 with chronic Tacrolimus nephrotoxicity
- 3/4 had stage II chronic kidney disease at follow up (22-55 months)
- 1/4 had normal renal function at 30 months posttransplantation
- 1/4 developed neurological regression and an extrapyramidal syndrome at 18 months; died at 20 months after developing hepatoblastoma

• 12 y with *MMAB*

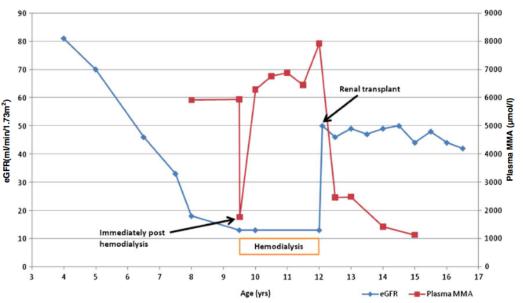
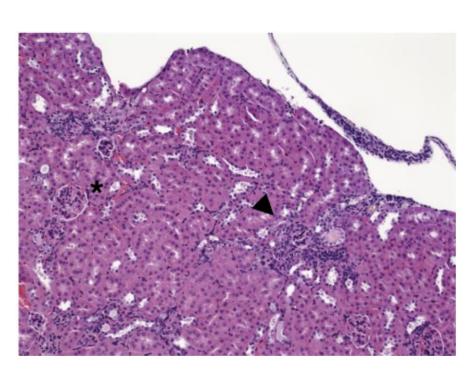
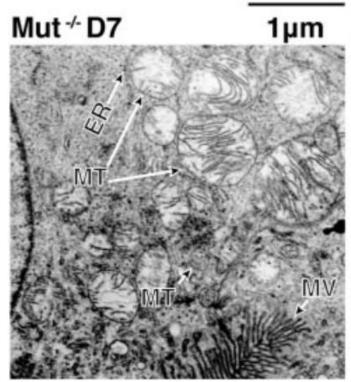
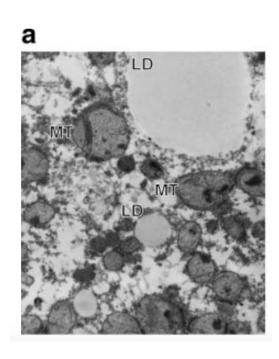
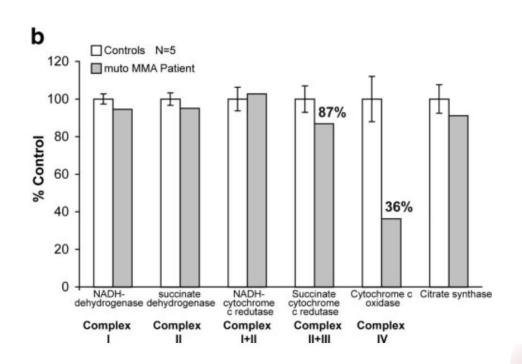
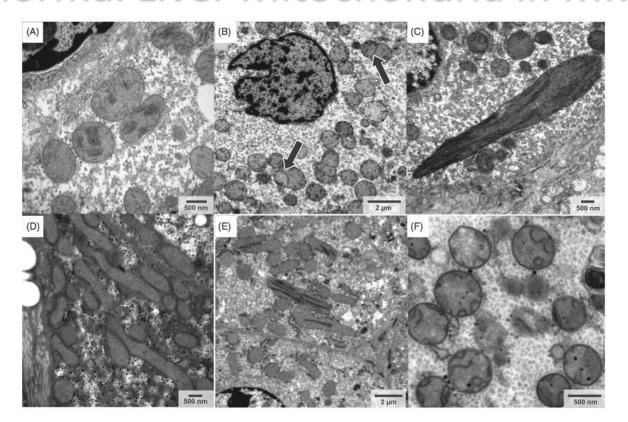




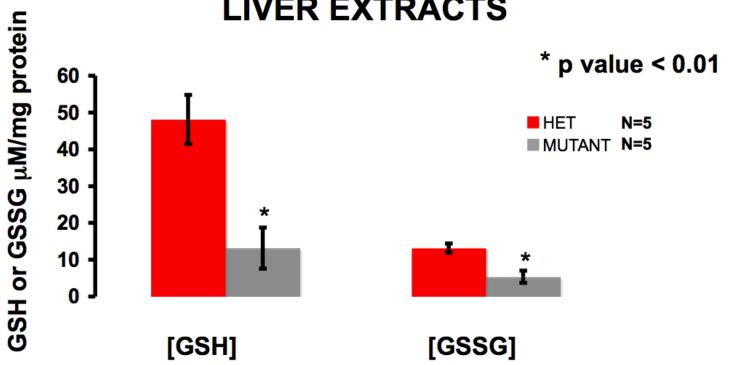
Fig. 2 Serum methylmalonate concentrations and eGFR pre-dialysis, during hemodialysis and after renal transplantation


Abnormal Kidney Mitochondria in MMA



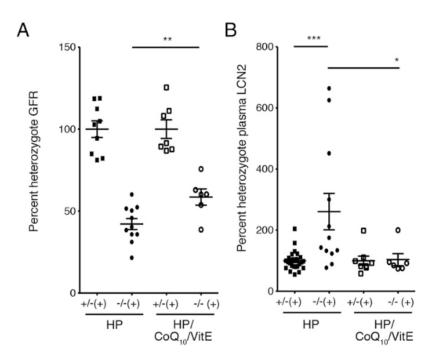

FASEB J 23:1252-61, 2009

Abnormal Liver Mitochondria in MMA



Abnormal Liver Mitochondria in MMA

GLUTATHIONE (GSH, GSSG) IN MURINE LIVER EXTRACTS


Glutathione in Organic Acidemias

- Glutathione levels can be low in organic acidemias, especially in times of crisis
- Possible role for antioxidants
- Careful attention to protein status
- Glutathione levels post-transplantation?

Mitochondrial Dysfunction in MMA

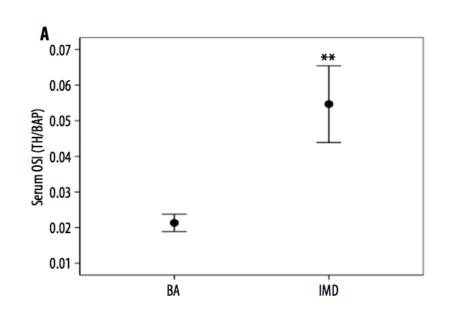
- Mut^{-/-};Tg^{INS-Alb-Mut} mice
- Rescued from neonatal lethality
- Develop chronic tubulointerstitial nephritis
- Lipocalin-2 a biomarker of kidney disease
- Antioxidant therapy ameliorated the renal disease of MMA

DOI: 10.12659/AOT.883820

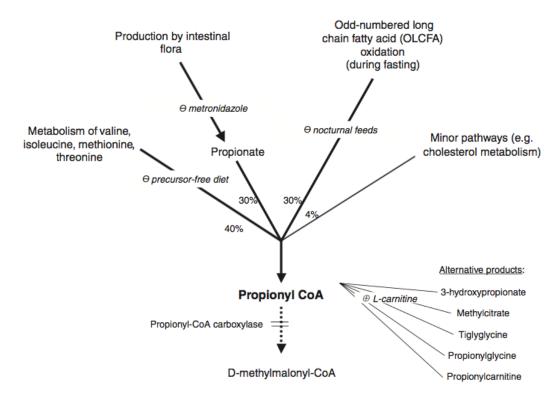
WWW.annalsoftransplantation.COM
Original Paper

Received: 2012.10.30 Accepted: 2013.02.15 Published: 2013.02.17 Children undergoing liver transplantation for treatment of inherited metabolic diseases are prone to higher oxidative stress, complement activity and transforming growth factor- β 1

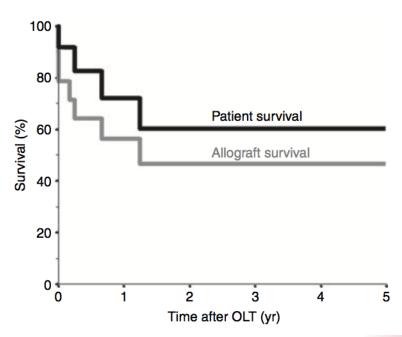
Authors' Contribution:


- A Study Design
- B Data Collection
- C Statistical Analysis
- Data Interpretation
- Manuscript Preparation
- ELiterature Search
- Funds Collection

Mohamed Hamed Hussein^{1,2,3Mee0033}, Takashi Hashimoto^{4Mee00336}, Tatsuya Suzuki^{1M36}, Ghada Abdel-Hamid Daoud^{5@033}, Tatenobu Goto⁶⁰³³, Yoko Nakajima⁶⁰³³, Takazumi Kato¹⁸⁰³, Masahito Hibi¹⁸⁰³, Hirokazu Tomishige¹⁸⁰³, Fujio Hara¹⁸⁰³³, Shin Kato⁶⁰³³, Hiroki Kakita⁶⁰³³, Michi Kamei⁶⁰³³, Tetsuya Ito⁶⁰⁰³³, Ineko Kato^{6,7M0033}, Atsushi Sugioka⁸⁸⁰³, Hajime Togari^{6M00336}



Oxidative Stress in LT for IEM


- Total hydroperoxide:biologic antioxidant potential ratio (TH/BAP)
- Biliary atresia (n=10)
- "Inherited metabolic disease" (n=6)
 - MMA, PA, arginase deficiency,
 GSD1a, tyrosinemia (n=2)

- 12 patients, 14 OTL
- 72% 1-year survival, 56% 5year survival
- 56% 1- year allograft survival, 47% 5-year allograft survival
- Stabilization and improvement of neurological function

- 12 patients, 17 OTL
- 3/12 dilated cardiomyopathy
- 6/12 had renal dysfunction pre-transplant
- Graft survival 60% at 5 years
- All patients had renal dysfunction post transplant
- Improved quality of life
- Stabilization of neurological status
- No metabolic decompensations
- Major reduction of propionate metabolites

- Mortality 58%
- 3/12 primary graft non-function
- 3/12 died from heart failure
- All with cardiomyopathy had normalized heart function
- 4/12 ARDS
- 6/12 hepatic artery thrombosis
- 1/12 acute encephalopathy recovered after stopping Tacrolimus

TABLE 1. Liver transplantation for Propionic Acidemia (N = 20)

						Protein restriction		
	References	Age of onset (age of LT, y)	PCC activity	Type of graft	Main indication	after LT, $g \cdot kg^{-1} \cdot day^{-1}$	Mean follow-up, y	Overall outcome
1	Murphy et al (4)	(26 m)	_	_	_	_	_	Retransplanted; died of heart failure 3 days later.
2	Saudubray et al (9)	16 d (7)	_	LDLT	PMC	None	-	Boy: chronic hyperammonaemia and neurologic sequelae; died 15 mo after LT
3		3d (9)		LDLT		None	5	Girl: no specific complications
4	Rela et al (10)	21 d (1.8)	_	ALT	PMC	None	15	
5		0 d (1,1)		LDLT (LR)	FH		11.4	No further metabolic decompensation
6	Vara et al (3)	3 d (0.8)		LDLT	FH		7.3	Development status unchanged after LT
7		5 d (7)		LDLT	PMC		4.9	
8		3 d (1.1)		LDLT	Elective		2.2	
9	Yorifuji et al (11)	Neo (2)	2%	LDLT (LR)	PMC	2	3.9	
10		Neo (5)	_	LDLT (LR)	PMC	1.8	1.4	Reduced metabolic decompensations

TABLE 1. Liver transplantation for Propionic Acidemia (N = 20)

1	References	Age of onset (age of LT, y)	PCC activity	Type of graft	Main indication	Protein restriction after LT, $\mathbf{g} \cdot \mathbf{kg}^{-1} \cdot \mathbf{day}^{-1}$	Mean follow-up, y	Overall outcome
11		Neo (1 y)	_	LDLT (LR)	PMC	1.5	0.7	
12	Kayler et al (12)	Neo (3)		cadaveric	_	_	_	Died 3 mo after LT
13	Barshes et al (2)	2 d (1.25)	<5%	Cadaveric	PMC	_	3.7	Development improvement
14		Neo (2)		cadaveric	PMC		0.5	Persistent development delays
15	Romano et al (7)	10 m (9 y)	0.001*	Cadaveric	PMC + CMP	None	13	No further metabolic decompensation Regression of CMP within 1 year after LT
16		3 d (6.5 y)	0.015*	Cadaveric	PMC + CMP	None	0.5	
17	Kasahara et al (8)	3 d (7 m)	<1%	LDLT (LR)	PMC	2	1.7	Neurologic improvement
18	Nagao et al (13)	7d (2y)	0.0*	LDLT (LR)	PMC		_	No further metabolic decompensation
19		44 d (2 y 2 m)	0.0*	LDLT (LR)	PMC		_	Normal cardiac function and development
20	Ryu et al (5)	7d (22 m)	_	LDLT	PMC	_	_	Death on D4: hepatic failure and severe metabolic acidosis

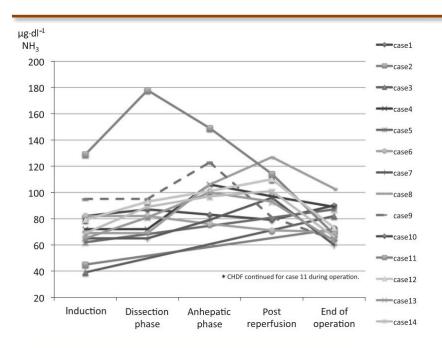
- Stop some medications
 - Sodium benzoate
 - Metronidazole
- Continue L-carnitine
- Liberalize protein
 - Natural protein 1 mg/kg/d
- Decreased metabolic crises; no hyperammonemia
- Lower C3-acylcarnitine and C3/C2 ratio
- Improved quality of life

- Dilated cardiomyopathy is a frequent complication of PA
 - Toxic metabolites inhibition of energy pathways
 - Methylcitrate (Krebs cycle enzymes)
 - Propionyl-CoA (pyruvate dehydrogenase, ETC activity, succinyl-CoA synthetase)
 - Methylmalonyl-CoA (succinate-supported respiration)
 - Anapleurotic defect
 - Decreased succinyl-CoA (TCA cycle function)
- Cardiomyopathy develops independent of any specific metabolic profile
- OTL reverses cardiomyopathy

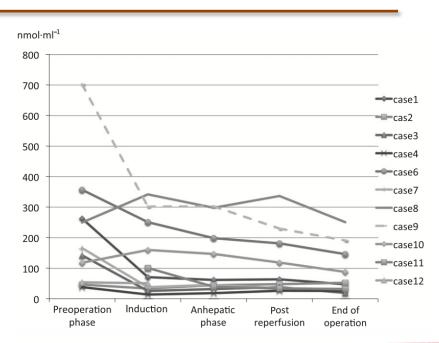
J Pediatr 156:128-34, 2010 Transpl Int 28:1447-50, 2015

MMA and PA Pre-operative Management

- Dietician evaluation
- Nephrology evaluation (MMA)
 - Cystatin C
- CHDF (MMA)
 - If kidney failure
- Cardiology evaluation (PA)


Perioperative Management

- Prevent catabolism
- Avoid transplantation during metabolic decompensation
- Infusion of 10% dextrose (+ sodium bicarbonate) at 1.5 times normal maintenance rate
- Attention to acid-base status, glucose, lactate levels
- Pre-operative dialysis
 - Renal failure
 - High levels of abnormal metabolites


Pediatr Anesth 26:694-702, 2016 J Pediatr Gastroenterol Nutr 64:e73-6, 2017

MMA Peri-operative Management

Figure 3 Intraoperative NH₃ change in all cases.

Figure 4 Methylmalonic acid change through LT.

Pediatr Anesth 26:694-702, 2016

Anesthesia Considerations

- Avoid drugs metabolized to propionic acid, odd-chain organic acids, alcohols, or fatty acids
- Avoid propofol
 - Small amount of soybean oil fats metabolized to propionate
- Avoid muscle relaxants metabolized by ester hydrolysis (succinylcholine, cisatracurium, atracurium)
 - Metabolites include odd-chain organic molecules

Anesth Analg 91:309-11, 2000 J Pediatr Gastroenterol Nutr 64:e73-6, 2017

MMA and PA Post-operative Management

- TPN + IL
 - POD 1 start 0.5 g/kg/d amino acids
 - POD 2 start 0.8 g/kg/d amino acids
 - POD 3 start 1.0 g/kg/d amino acids
- Carnitine supplementation
- Close monitoring blood glucose
- Transition from TPN to enteral/oral feeds
- Maintain same dietary plan post-operatively
 - Slowly liberalize protein as tolerated (months)
- Wean off metabolic formula as possible as DRI reached

MMA and PA Post-operative Management

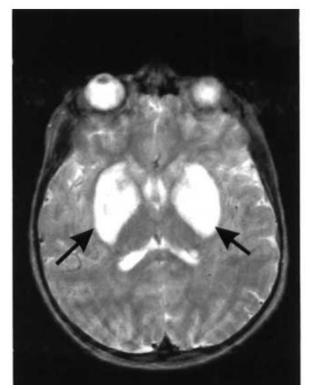
- Start enteral or oral feeds as soon as possible when stable
- Wean TPN either by decreasing volume or altering amino acids in TPN depending on other needs for fluids and calories
- Wean lipids once calories from enteral feeds approach goal

MMA and PA Post-operative Management

- Wean off metabolic formula as possible as DRI reached
- This is typically a slow, stepwise process
 - Clinic visit interval
 - Monitoring labs (e.g., plasma amino acids, nutrition labs)
 - Complete blood count, prealbumin, C-reactive protein, zinc, selenium, essential fatty acids, 25-hydroxy vitamin D, vitamin B_{12}

Liver Transplantation Complications

- Mortality
- Lactic acidemia
- Metabolic decompensation
- 'Metabolic stroke'
- Graft rejection
- Post-op pancreatitis


- Immunosuppression complications
 Diabetes
 - Hypertension
 - Seizures
 - Infections
 - Nephrotoxicity
- Surgical complications
 - Hepatic artery thrombosis
 - Subphrenic abscess
 - Splenic rupture

J Pediatr 140:261-3, 2002 Ther Apher Dial 15:488-92, 2011 J Pediatr 166:1455-61, 2015 Pediatr Anesth 26:694-702, 2016

Metabolic Stroke in MMA

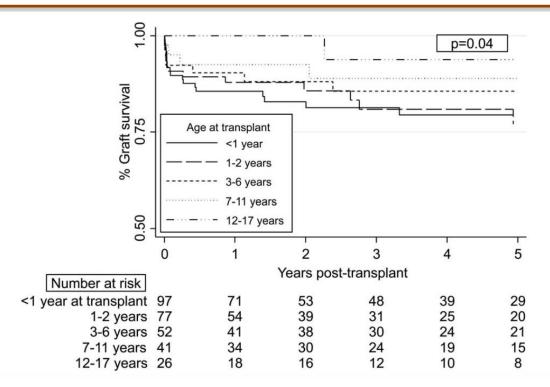
- LT at 9 months
- Age 5 ½ y developed pneumonia
- Acute neurological decompensation 1 w later while stable on IV antibiotics

J Pediatr 140:261-3, 2002

Post-transplant Complications in MMA

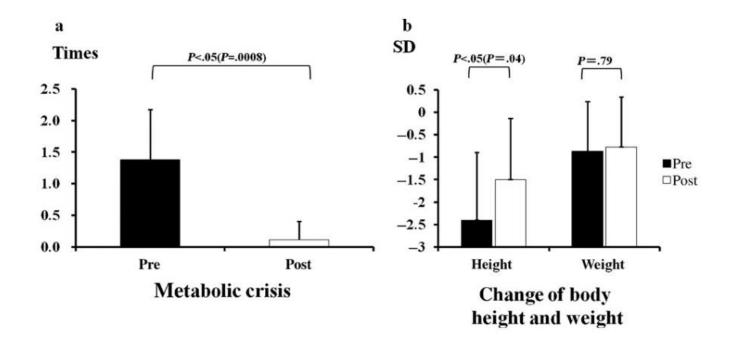
- LT at 22 y
- 3 m after LT developed kidney failure
- Normal brain CT and MRI
- Progressive neurological findings
 - Limp
 - Lost voluntary control of legs and, later, arms
 - Spasmodic leg contractions

Persisting Morbidity


Biochemical abnormalities persist

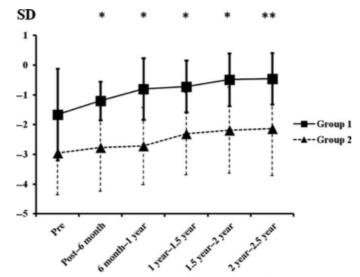
Renal insufficiency after LT

Risk of metabolic strokes remains


Pediatric Liver Transplant for Organic Acidemias

Pediatric Liver Transplant for Organic Acidemias (UNOS)

- 5-y post-transplant survival 78% (<2 y) and 88% (≥ 2 y)
- Vascular thrombosis caused 44% of graft losses
- 65% of graft losses occurred in children <2 y
- Children with UCDs/OAs more likely to have cognitive and motor delays compared to those who underwent transplantation for other indications


MMA Post-transplant Outcomes

MMA Post-transplant Outcomes

- 13 MMA patients
- 9 mut⁰, 2 mut⁻, 2 unknown
- Living donor transpant
- 4 to 16 y follow up
- Protein-restricted diet
- Mean DQ before and after LDLT did not differ significantly
- • mean plasma MMA and C3
- One patient developed renal failure

Dynamic change of body height

FIGURE 2 Change in height after LDLT; \blacksquare data of patients who underwent LDLT before the age of 1 y (n=7); \blacktriangle data of patients who underwent LDLT after the age of 1 y (n=6) *P<.05, ** P=.053

Pediatr Transpl 20:1081-6, 2016

Liver Transplantation Cost-Effectiveness

- 1.5 more life years lived
- 7.9 more QALYs
- Savings of \$582,369 for lifetime societal cost per individual (compared to nutritional support)
- LT more effective and less costly in all 1-way sensitivity analyses
- LT a dominant treatment strategy in newborns with classical MMA or PA

Organ Prioritization for MMA Transplantation

Autonomy

- Right to request transplantation
- Request might not be honored (scarcity of organs)

Beneficence


- Dietary management
- Consideration of benefits of transplantation

Nonmaleficence

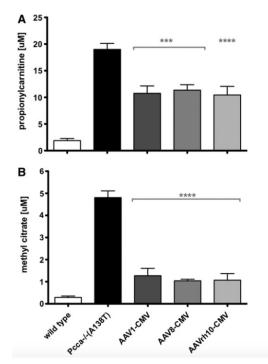
- Risks of procedure and immunosuppression
- Long-term neurological outcomes

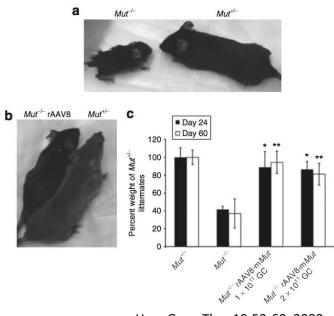
Justice

- Consider interests of communities v. individual
- Consider utility

MMA Therapy in Development

- Gene therapy
- mRNA therapy
- Hepatocyte transplantation


MMA Therapy in Development


- Gene therapy
 - Transgenic model
 - Hepatic targeting > phenotypic correction
- AAV
 - Hepatic genotoxicity
 - Immune responses
 - Neutralizing antibodies

Gene Therapy (Pre-Clinical)

Adenovirus, AAV, Lentivirus

Hum Gene Ther 19:53-60, 2008 Mol Ther 18:11-16, 2010 Gene Ther 29:385-91, 2012 Hum Gene Ther 25:529-38, 2014 Hum Gene Ther 25:837-43, 2014

Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia

Ding An,^{1,3} Jessica L. Schneller,^{2,3} Andrea Frassetto,¹ Shi Liang,¹ Xuling Zhu,¹ Ji-Sun Park,¹ Matt Theisen,¹ Sue-Jean Hong,¹ Jenny Zhou,¹ Raj Rajendran,¹ Becca Levy,¹ Rebecca Howell,¹ Gilles Besin,¹ Vladimir Presnyak,¹ Staci Sabnis,¹ Kerry E. Murphy-Benenato,¹ E. Sathyajith Kumarasinghe,¹ Timothy Salerno,¹ Cosmin Mihai,¹ Christine M. Lukacs,¹ Randy J. Chandler,² Lin T. Guey,¹ Charles P. Venditti,^{2,4,*} and Paolo G.V. Martini^{1,4,5,*} ¹Moderna Therapeutics, Cambridge, MA 02139, USA

²Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA

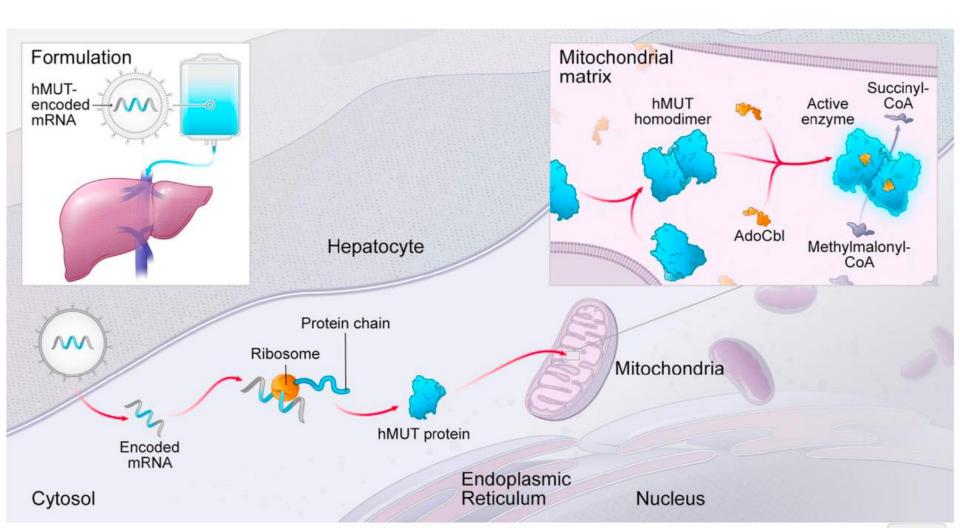
³These authors contributed equally

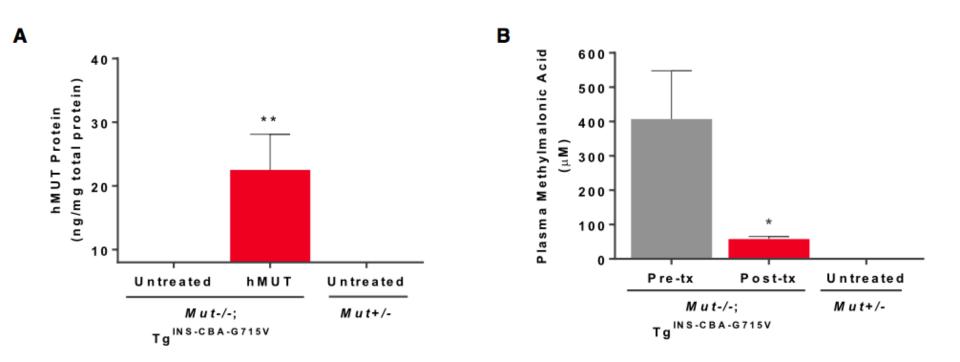
⁴Senior author

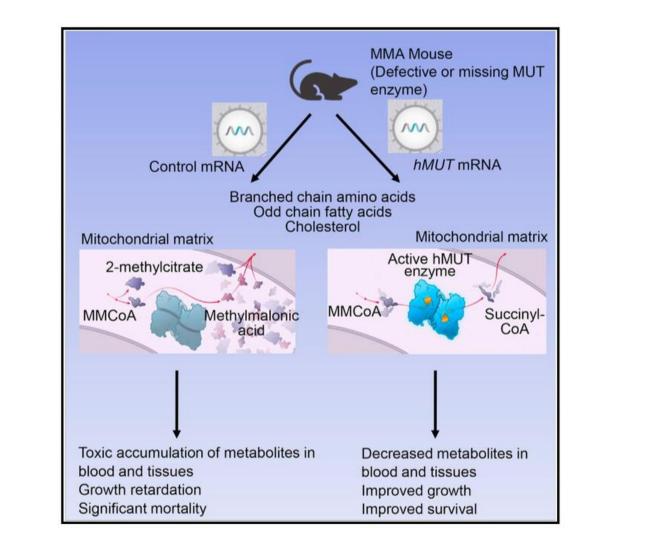
⁵Lead Contact

^{*}Correspondence: venditti@mail.nih.gov (C.P.V.), paolo.martini@modernatx.com (P.G.V.M.) https://doi.org/10.1016/j.celrep.2017.11.081

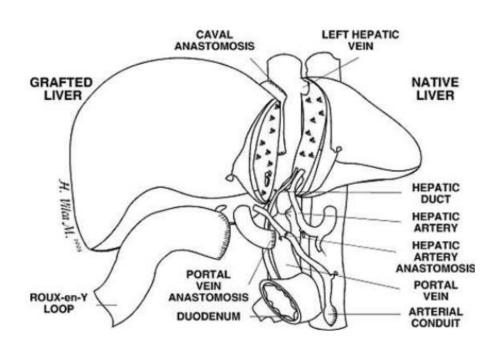
mRNA Therapy


- No insertional mutagenesis
- Avoids constitutive gene activation
- Alternative to conventional ERT
- Being developed for:
 - Hemophilia B
 - Sensory nerve disorders
 - Lung disease
 - Cancer


Lipid Nanoparticles


- Bio-degradable
- Liver targeting
- Encapsulate biomolecules
- Deliver systemically

Improved Metabolism in *mut* MMA Mice after i.v. *hMUT* mRNA



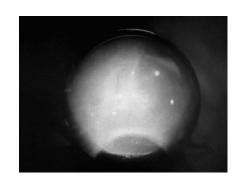
MMA Hepatocyte Therapy

- Mut^{-/-};Tg^{INS-MCK-Mut} mouse model
 - Muscle-specific promoter
 - Significant hepatic and renal pathology
 - Growth retardation
- 8 week old mice (n=6)
- Direct splenic injection of fresh hepatocytes
- 3 survivors showed improved weight gain and metabolic parameters up to 2 months after transplantation

Auxillary Liver Transplantation in PA

- 2 y underwent ALT
- Normal diet
- Normal growth; acceptable neurological and psychomotor development
- Alternative approach
- Preserves native liver
- Back-up in case of graft failure
- Future gene, stem cell, or mRNA therapy

Summary - Ongoing questions


 Does early LT preserve or decrease decline in renal function in MMA?

Does transplantation improve neurological outcome?

 Can redox modulation therapy help maintain kidney function or improve neurological outcome?

Summary

- LT, LKT (MMA) or KT (MMA, milder forms?) appear to be viable therapeutic approaches; no reason to use extended criteria donors
- Decreased frequency of metabolic crises and hospitalizations
- Stabilization of neurological function
- Liberalization of diet
- Weight gain
- Improved quality of life
- Consider auxillary LT (gene, stem cell, mRNA therapies)?

Acknowledgements

- Anna-Kaisa Niemi, M.D., Ph.D
- Tina Cowan, Ph.D.
- Tereza Moore, Ph.D.
- Nancy Baugh, M.S., R.D.
- Carlos Esquivel, M.D., Ph.D.
- Irene Kim, M.D.
- Waldo Concepcion M.D., Ph.D.
- Maria T. Millan, M.D.
- Clark A. Bonham, M.D.
- Marcia Castillo, R.N., B.S.N.
- Casey E. Krueger, Ph.D.
- Karen Wayman, Ph.D.
- Rachel Farrell
- Stanford Medical Genetics Residents, Genetic Counselors, RNs, RDs

