Alcohol-Induced Neuroinflammation in an Animal Model of FASD and Neuroprotection by Anti-Inflammatory Agents

Paul Drew, Ph.D. and Cindy Kane, Ph.D.

Department of Neurobiology and Developmental Sciences University of Arkansas for Medical Sciences

LEARNING OBJECTIVES

- Understand the sensitivity of the developing brain to the toxic effects of alcohol
- Understand the role of alcohol-induced neuroinflammation in mediating toxicity in the brain
- Appreciate the potential of antiinflammatory therapies in treatment of FASD

Microglial Activation

Occurs in Response to:

• Injury, infection, disease, toxins, ethanol

Resting

Activated

Ethanol Impact on Neuron–Microglia Interactions

Neonatal Mouse Model of 3rd Trimester Fetal Alcohol Exposure

- Postnatal treatment (P4-9)
- E = ethanol treated
 3.5-4 mg/kg/day
 BEC 200-325 mg/dl
- Control groups:
 - H = handled only
 - V = vehicle treated

Microglial Activation

Neuroinflammatory Cytokine and Chemokine Expression

Potential Mechanisms of Ethanol-Induced Neuroinflammation in FASD Models

Potential for Anti-Inflammatory Therapeutics in FASD

• Thiazolidinediones:

Pioglitazone (Actos[™])

• Docosahexanenoic acid (DHA): an ω -3 fatty acid

Pioglitazone: Prevention of Ethanol-Induced Microglial Activation: Quantitative Morphometry

Pioglitazone: Prevention of Neuroinflammatory Cytokine and Chemokine Expression

Docosahexaenoic Acid (DHA): Prevention of Neuroinflammatory Cytokine Expression

Pioglitazone: Protection of Cerebellar Purkinje Neurons

PIO

VEHICLE

ETHANOL

Summary

- Ethanol in the developing CNS activates the neuroimmune system
 - Microglial activation
 - Pro-inflammatory cytokine and chemokine expression
- Ethanol-induced neuroinflammation may occur through mechanisms including TLR-4 and downstream MyD88 and/or TRIF signaling
- PPAR-γ agonists including DHA and pioglitazone block neuroinflammation and prevent neurodegeneration in animal models of FASD
 - Suggests PPAR- γ agonists may be effective in treatment of FASD

Selected References

Kane, C.J.M., K.D. Phelan, L. Han, R.R. Smith, J. Xie, J.C. Douglas, and P.D. Drew. 2011. Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator activated receptor gamma ligands. Brain Behavior and Immunity. 25:S137-S145.

Kane, C.J.M., K.D. Phelan, J.C. Douglas, G. Wagoner, J. Walker-Johnson, J. Xu, and P.D. Drew. 2013. Effects of ethanol on immune response in the brain: region specific changes in aged mice. J. Neuroinflammation. 10:66-69.

Kane, C.J.M., K.D. Phelan, J.C. Douglas, G. Wagoner, J. Walker-Johnson, J. Xu, P.S. Phelan, and P.D. Drew. 2014. Effects of ethanol on immune response in the brain: region specific changes in adolescent versus adult mice. Alcohol Clin. Exp. Res. 38:384-391.

Drew, P.D., J.W. Johnson, J.C. Douglas, K.D. Phelan, and C.J.M. Kane. 2015. Pioglitazone Blocks Ethanol Induction of Microglial Activation and Immune Responses in the Hippocampus, Cerebellum, and Cerebral Cortex in a Mouse Model of Fetal Alcohol Spectrum Disorders. Alcohol Clin. Exp. Res. 39:445-454.

Kane, C.J.M., and P.D. Drew. 2016. Inflammatory Responses to Alcohol in the CNS: Nuclear Receptors as Potential Therapeutics for Alcohol-Induced Neuropathologies. Journal of Leukocyte Biology. 100:951-959.

Acknowledgements

Laboratory Contributors:

J.C. Douglas, B.A., B.S. Jennifer Johnson, B.S. Tonya Rafferty, B.S. Gail Wagoner, LAT

Collaborator:

Kevin Phelan, Ph.D.

NIH: National Institute on Alcohol Abuse and Alcoholism