Alcohol-Induced Neuroinflammation in an Animal Model of FASD and Neuroprotection by Anti-Inflammatory Agents

Paul Drew, Ph.D. and Cindy Kane, Ph.D.

Department of Neurobiology and Developmental Sciences
University of Arkansas for Medical Sciences
LEARNING OBJECTIVES

• Understand the sensitivity of the developing brain to the toxic effects of alcohol
• Understand the role of alcohol-induced neuroinflammation in mediating toxicity in the brain
• Appreciate the potential of anti-inflammatory therapies in treatment of FASD
Microglial Activation

Occurs in Response to:
- Injury, infection, disease, toxins, ethanol

![Diagram showing stages of microglial activation]

Resting → Intermediate Activation → Fully Activated

Images of resting and activated microglia are shown.
Ethanol Impact on Neuron–Microglia Interactions

ETHANOL → ? → NEURON

harmful microglia → NEURON: NEURON DEATH, CNS DYSFUNCTION

beneficial microglia → NEURON: NEURON SURVIVAL, NORMAL CNS FUNCTION
Neonatal Mouse Model of 3rd Trimester Fetal Alcohol Exposure

- Postnatal treatment (P4-9)
- E = ethanol treated
 - 3.5-4 mg/kg/day
 - BEC 200-325 mg/dl
- Control groups:
 - H = handled only
 - V = vehicle treated
Microglial Activation

<table>
<thead>
<tr>
<th></th>
<th>HIPPOCAMPUS</th>
<th>CEREBELLUM</th>
<th>CEREBRAL CORTEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANDLED CONTROL</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>VEHICLE CONTROL</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>ETHANOL</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
Neuroinflammatory Cytokine and Chemokine Expression

HIPPOCAMPUS
- **IL-1β**
- **TNF-α**
- **CCL2**

CEREBELLUM
- **IL-1β**
- **TNF-α**
- **CCL2**

CEREBRAL CORTEX
- **IL-1β**
- **TNF-α**
- **CCL2**
Potential Mechanisms of Ethanol-Induced Neuroinflammation in FASD Models
TLR-4 Signaling

ETHANOL

TLR-4

MYD88 PATHWAY

MYD88

TRIF PATHWAY

TRIF

INFLAMMASOMES

PRO-IL-1β → IL-1β

AP-1

NF-κB

IRF-3

CCL2

IL-1β

IL-6

TNF-α

IFN-β
MyD88-Dependent Signaling

IL-1β

Hippocampus

Wild type
MyD88 Knockout

Gene Expression

Cerebellum

Wild type
MyD88 Knockout

Gene Expression
Potential for Anti-Inflammatory Therapeutics in FASD
PPAR-γ Agonists

- Thiazolidinediones:
 Pioglitazone (Actos™)

- Docosahexanenoic acid (DHA): an ω-3 fatty acid
Pioglitazone: Prevention of Ethanol-Induced Microglial Activation: Quantitative Morphometry
Pioglitazone: Prevention of Neuroinflammatory Cytokine and Chemokine Expression

<table>
<thead>
<tr>
<th></th>
<th>HIPPOCAMPUS</th>
<th>CEREBELLUM</th>
<th>CEREBRAL CORTEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Docosahexaenoic Acid (DHA): Prevention of Neuroinflammatory Cytokine Expression
Pioglitazone: Protection of Cerebellar Purkinje Neurons

VEHICLE PIO

ETHANOL PIO + ETHANOL

Purkinje Cell Number (x 10^3)

V PIO E PIO + E

*** *** ***
Summary

- Ethanol in the developing CNS activates the neuroimmune system
 - Microglial activation
 - Pro-inflammatory cytokine and chemokine expression
- Ethanol-induced neuroinflammation may occur through mechanisms including TLR-4 and downstream MyD88 and/or TRIF signaling
- PPAR-γ agonists – including DHA and pioglitazone – block neuroinflammation and prevent neurodegeneration in animal models of FASD
 - Suggests PPAR-γ agonists may be effective in treatment of FASD
Selected References

Acknowledgements

Laboratory Contributors:
J.C. Douglas, B.A., B.S.
Jennifer Johnson, B.S.
Tonya Rafferty, B.S.
Gail Wagoner, LAT

Collaborator:
Kevin Phelan, Ph.D.

NIH: National Institute on Alcohol Abuse and Alcoholism